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Exploring the Unfolding of Dynamic Effects with Continuous-Time Models: 
Recommendations Concerning Statistical Power to Detect Peak Cross-Lagged Effects
Martin Hecht a and Steffen Zitzmannb

aHumboldt-Universität zu Berlin; bUniversity of Tübingen

ABSTRACT
Cross-lagged panel models have been commonly applied to investigate the dynamic interplay of 
variables. In such discrete-time models, the size of the cross-lagged effects depends on the length of 
the time interval between the measurement occasions. Continuous-time modeling allows to explore 
this interval dependence of cross-lagged effects and thus to identify the maximal “peak” cross-lagged 
effects. To detect these peak effects, sufficient statistical power is needed. Based on results from 
a simulation study, we employed machine learning algorithms to identify a highly accurate prediction 
model. Results are incorporated into a Shiny App (available at https://psychtools.shinyapps.io/ 
ContinuousTimePowerCalculation) for easy power calculations. Although limitations apply, our results 
might be helpful for study planning.
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A common research question in the social sciences is about the 
reciprocal (or dynamic) interplay of variables over time. 
Models suitable for investigating such dynamics come by dif
ferent names, for instance, linear panel models (Greenberg & 
Kessler, 1982), causal models (Bentler, 1980), autoregressive 
cross-lagged models (Bollen & Curran, 2006), and cross-lagged 
panel models (Mayer, 1986). The key components of these 
models are the autoregressive effects and the cross-lagged 
effects. An autoregressive effect indicates the strength of the 
impact of a variable on itself from time point to time point, 
whereas the cross-lagged effects describe the influences 
between the variables, that is, how a variable at a time point 
is impacted by the values of other variables at a previous time 
point.

One characteristic of cross-lagged effects from cross-lagged 
panel models is that they depend on the time interval between 
measurement occasions. For different interval lengths, the 
cross-lagged effects differ in size. This is because the impact 
of a variable on another first needs to unfold before it reaches 
its maximum and then declines with the passing of more time. 
For instance, a high dose of physical activity stimulates bio
chemical processes in the body which results in strong muscle 
ache some time later with a peak effect after a certain time span 
(e.g., Hecht & Voelkle, 2021, determined such a time span to be 
around half a day). Then, after a couple of days, the impact of 
high physical activity from some days ago has dissipated. Thus, 
there is a roughly inverse-U-shaped curve that describes the 
size of a cross-lagged effect depending on the length of the time 
interval. Figure 1 (adapted from Hecht & Voelkle, 2021) illus
trates such a curve. The values of the cross-lagged effects 
(y-axis) are plotted against the time interval length (x-axis). 
For a time interval of zero, the cross-lagged effect is, of course, 
zero because there cannot be an impact from one variable to 
another if no time has passed. When more time passes, the 

effect from physical activity on pain severity unfolds (the curve 
rises) and then reaches the maximum effect for a time interval 
of around half a day. For longer time intervals, the size of the 
cross-lagged effect (and the curve) declines toward zero again.

When researchers plan their longitudinal studies, they need 
to choose a specific length of the time interval between mea
surement occasions. This means that they obtain cross-lagged 
effects from cross-lagged panel analysis for this specific time 
interval. However, where these effects are located in the effect 
distribution across interval lengths and whether these effects 
are the peak effects is usually unknown and hardly explorable 
with cross-lagged panel models. A solution to this problem is 
continuous-time modeling which offers exactly this feature: the 
unfolding and dissipation of cross-lagged relations can be 
investigated, independently from the spacing of measurement 
occasions in the study design. This is made possible by con
ceptualizing humans as continuously existing entities and dif
ferential calculus.

Among psychologists, there is a rather broad consensus that 
the human system continuously exists at all points in time 
(within the time span of life). This understanding is, however, 
not fully utilized in cross-lagged panel models and other dis
crete-time models. In contrast, continuous-time modeling 
explicitly builds upon the continuous human nature. When 
we observe the continuously existing and evolving human 
system at certain discrete time points, we obtain “snapshots” 
that can be used to estimate the parameters that describe the 
continuous system dynamics which are represented by 
a stochastic differential equation (see, e.g., Oud & Delsing, 
2010).

Unfortunately, the mathematics needed for continuous- 
time modeling are somewhat intricate (see, e.g., Voelkle et al., 
2012, for a didactic introduction and Hecht et al., 2019, for 
examples and explanations on how to understand the 
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mathematical model notation), but fortunately accessible soft
ware solutions like ctsem (Driver et al., 2017) exist for model 
estimation. Analogous to discrete-time models, the parameters 
that describe the continuous dynamics within the human sys
tem in continuous-time models are again effects that tempo
rally relate one variable to itself (auto-effect) and to the other 
variables (cross-effects). To not confuse discrete-time cross- 
lagged modeling and continuous-time modeling, it is advisable 
to carefully distinguish parameter labels (an overview is given 
in the work of Hecht & Voelkle, 2021).

The mathematical relations between a continuous-time 
model and its corresponding time interval dependent dis
crete-time counterpart models are given by a set of equations 
(see, e.g., Equations 5–16 in the Appendix of the work of 
Hecht & Voelkle, 2021, or Equations 6–8 in this article further 
below). Hereby, a key feature is that the parameters of the one 
model that describes the continuously evolving human system 
(i.e., the continuous-time parameters) can be transformed 
into parameters of many discrete-time cross-lagged models 
that describe the dynamics for arbitrary time intervals 
between discrete points in time. This feature implies some of 
the advantages of continuous-time modeling: (1) The possi
bility to compute discrete-time parameters for any time inter
val allows for comparing results from studies which used 
different time intervals for the assessment. (2) Each person 
might be assessed at different points in time; data from such 
flexible longitudinal designs (Hecht et al., 2019) can be used to 
estimate the continuous-time parameters, because no matter 
when the assessments of persons were conducted, they all are 
snapshots of the same continuous phenomenon. (3) The 
unfolding and dissipation of effects can be studied and the 
time interval for which the interrelation between variables 
(i.e., the cross-lagged effects) is strongest can be determined.

Oftentimes, these peak effects are of central substantive 
interest and researchers want to conduct inferential statis
tical tests for them. Thus, the question of statistical power 
immediately arises. Especially in psychology with usually 
underpowered studies (Maxwell, 2004), statistical power 
has been and is a pivotal and much discussed topic, and 
researchers might welcome recommendations to achieve 
sufficient power.

Purpose and scope

In the present work, we identify a prediction model for statis
tical power of peak cross-lagged effects with continuous-time 
models and provide an easy-to-use Shiny App with which the 
statistical power can be roughly approximated. We assume that 
the statistical power of the peak cross-lagged effects in contin
uous-time models depends on the number of persons, the 
number of time points, and the size of the peak cross-lagged 
effect, because sample size and effect size are classic factors 
related to statistical power.

The article is organized into the following sections. First, we 
briefly present a popular continuous-time model which is 
suitable to explore peak cross-lagged effects, compare notations 
and parameterizations for this model, and cite some empirical 
applications of this model. Second, we report results from 
a simulation study in which we varied the number of persons, 
the number of time points, the effect size, and the size of the 
auto-effect, and then calculated the power for a null hypothesis 
test of the peak cross-lagged effect against zero (α ¼ :05). With 
the help of machine learning algorithms, we derive a prediction 
formula which could be used to roughly approximate power 
for study planning. Finally, we conclude with a discussion of 
our work (including limitations).

Figure 1. Discrete-time cross-lagged effects plot. PA = Physical activity; SS = Symptom severity. Adapted from Hecht and Voelkle (2021).
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Multivariate continuous-time models

Model formulations

Continuous-time modeling is a popular approach in many dis
ciplines, for instance, in the natural sciences, finance, and econo
metrics (e.g., Capasso & Bakstein, 2012; Dana & Jeanblanc, 2003; 
Gandolfo, 1993; Sinha & Rao, 1991). Recently, continuous-time 
modeling has found its way into the behavioral sciences (e.g., Van 
Montfort et al., 2018). Although continuous-time models come in 
various flavors, a common continuous-time model in the beha
vioral sciences and psychology is the linear stochastic differential 
equation model (Oud & Delsing, 2010), which may also be called 
continuous-time first-order vector autoregressive [CT-VAR(1)] 
model (Ryan et al., 2018), multivariate continuous-time model 
(Hecht & Voelkle, 2021), or multivariate Ornstein-Uhlenbeck 
process (e.g., Oravecz et al., 2018). The core of these models is 
a stochastic differential equation which can be conceptually writ
ten as: 

derivative ¼ deterministic partþ stochastic part : (1) 

The derivative is the result of performing a differentiation 
process upon a function which describes the state of the 
(human) system depending on time. Time is usually denoted 
with symbol t, whereas the notation of the vector which contains 
a value per variable (“state vector”) differs, for example, x (Oud & 
Delsing, 2010; Voelkle et al., 2012), y (Ryan et al., 2018), η (Driver 
et al., 2017), Θ (Oravecz et al., 2018), and θ (Hecht & Voelkle, 
2021). The derivative is often given in Leibniz’s notation: dxðtÞ

dt 
(e.g., Oud & Delsing, 2010; Ryan et al., 2018; Voelkle et al., 2012). 
Some authors (e.g., Driver et al., 2017; Hecht & Voelkle, 2021; 
Oravecz et al., 2018) place the differential dt on the right-hand side 
of the equation: dxðtÞ ¼ ½. . .�dt, presumably because the Wiener 
process is not differentiable (Singer, 2012).

The deterministic part contains the product of a matrix, which 
is usually referred to as the drift matrix, and the state vector. Many 
authors denote the drift matrix with the symbol A, one exception 
being Oravecz et al.’s model where drift matrix B ¼ � A. Further, 
a term relating to the mean levels of the processes is usually 
included. Often, either process intercepts, b (e.g., Driver et al., 
2017; Oud & Delsing, 2010; Voelkle et al., 2012), or process means, 
μ (e.g., Oravecz et al., 2018; Ryan et al., 2018), are used. As the 
relation between process means and continuous-time intercepts is 
μ ¼ � A� 1b, these expressions are interchangeable, for exam
ple, Aðx � μÞ ¼ Ax þ b.

The stochastic part comprises scaled derivatives or differ
entials of Wiener processes WðtÞ (i.e., random walks in con
tinuous time) representing stochastic noise. The derivatives 
dWðtÞ

dt or differentials dWðtÞ are scaled by the Cholesky factor 
of the covariance matrix of the noise. Oud et al. (2018) call this 
covariance matrix diffusion covariance matrix and its Cholesky 
factor diffusion matrix, whereas other authors (e.g., Oud & 
Delsing, 2010; Voelkle et al., 2012) call the covariance matrix 
“diffusion matrix” and impose no specific name on its 
Cholesky factor. Often, the covariance matrix is denoted with 
symbol Q and the Cholesky factor with G, one exception being 
Oravecz et al.’s notation of Σ instead of G.

Furthermore, continuous-time models frequently include 
a measurement part, for example, for continuous response 

data (e.g., Arminger, 1986; Chow et al., 2016; Deboeck & 
Boulton, 2016; Driver et al., 2017; Oud & Delsing, 2010; Oud 
& Jansen, 2000; Singer, 2012) or for dichotomous response data 
(Hecht et al., 2019). Also, various model extensions were pro
posed, for example, with individually varying continuous-time 
intercepts (e.g., Hecht & Voelkle, 2021; Oud & Delsing, 2010) 
and with time-independent and time-dependent predictors 
(e.g., Driver et al., 2017).

In summary, multivariate continuous-time models have 
been introduced to the behavioral and social sciences as exem
plarily illustrated by the—not exhaustive—list of cited works 
above. The mathematical symbols, notations, parameteriza
tions, names, and extensions might differ, but all the multi
variate continuous-time models have the same stochastic 
differential equation core. Also, the popular continuous-time 
modeling software ctsem (Driver et al., 2017, 2020) is based on 
the multivariate continuous-time model and allows users to 
estimate this model.

Empirical applications

Multivariate continuous-time models (or their variants/exten
sions) have been applied in many areas of behavioral and social 
sciences research and other disciplines. Often, the number of 
processes under investigation was two, that is, a bivariate con
tinuous-time model was employed. For example, Voelkle et al. 
(2012) illustrated the dynamic interplay of authoritarianism 
and anomia; Ryan et al. (2018) investigated the temporal rela
tions between feeling down and being tired; Oravecz et al. 
(2018) showed how two core affect ratings, valence and arousal, 
are related across time; Tómasson (2018) illustrated the asso
ciations of temperature and CO2 over 800,000 years; Crewther 
et al. (2020) studied the temporal relation of testosterone and 
motivation; Crewther et al. (2021) investigated the within- 
person coupling of testosterone and cortisol; Hecht and 
Voelkle (2021) illustrated the temporal associations between 
physical activity and pain; Mueller et al. (2018) estimated 
multiple bivariate continuous-time models to explore the 
bivariate dynamic relations between extraversion, neuroticism, 
physical functioning, and vision; Volz et al. (2019) investigated 
the dynamic interplay of general self-efficacy and post-stroke 
depression; Dormann et al. (2018) studied psychosocial safety 
climate and depression with the bivariate continuous-time 
model; and, to complete our exemplary non-exhaustive list of 
empirical applications, Ehm et al. (2019) examined the relation 
between academic self-concept and achievement.

Overall, continuous-time modeling has been applied in 
research practice. As the multivariate continuous-time model 
is a more general variant of the popular (random intercept) 
cross-lagged panel model [(RI)-CLPM; e.g., Hamaker et al., 
2015; Kearney, 2017; Selig & Little, 2012] we are optimistic 
that the usage of multivariate continuous-time models will 
accelerate.

Model formulation in the current study

The formulation of the multivariate continuous-time model in 
the current study is largely based on the work of Oud and 
Delsing (2010) with slight notational adaptations. The core of 
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our model is the standard stochastic differential equation as 
described above. In our notation it reads: 

dyjt

dt
¼ A yjt � μj

� �
þ G

dWjt

dt
; (2) 

where yjt 2 R F is the state vector of person j’s F-dimensional 
dynamical system at continuous time t 2 R (with F being the 
total number of variables or “processes”). dyjt

dt is the derivative, 
which may be interpreted as the instantaneous rate of change 
(or velocity) of the system at time t. The F � F drift matrix A 
contains the auto-effects (on the main diagonal) and cross- 
effects (on the off-diagonals) and thus characterizes the tem
poral dynamics of the variables. In the present work, we limit 
our delineations to continuous-time models in which the real- 
parts of the eigenvalues of A are negative. The vector μj 2 R F 

contains the individual means. Noise is represented by 
a multivariate Wiener process Wjt 2 R F and dWjt

dt is its formal 
derivative. The F � F diffusion covariance matrix Q ¼ GG0 is 
the covariance matrix of this noise, and G is the Cholesky 
factor of Q representing the effect of the noise.

The solution of the stochastic differential equation (Equation 
2) is given as: 

for p � 2; yjp ¼ A�Δp� 1
yjðp� 1Þ þ IF � A�Δp� 1

� �
μj þ ωjðp� 1Þ ; (3) 

μj,NF μ;Σ1ð Þ ; (4) 

ωjðp� 1Þ,NF 0;Q�Δp� 1

� �
; (5) 

A�Δp� 1
¼ expðAΔp� 1Þ ; (6) 

Q�Δp� 1
¼ irow � expðA#Δp� 1Þ � IF2

� �
row Q1

� �
; (7) 

with A# ¼ A� IF þ IF � A and Q1 ¼ irow � A� 1
# row Q

� �

(8) 

and for p ¼ 1; yj1 ,NF μj þ μdev;Σfw

� �
; (9) 

where IF and IF2 are identity matrices of size F and F2, respectively. 
� denotes the Kronecker product. The row operator puts the 
elements of a matrix row-wise in a column vector. The irow 
operator puts the elements from the column vector back into 
a matrix.

The interval dependent discrete-time part of the model is given 
by Equation 3. Unequal-interval longitudinal designs usually 
involve responses of j ¼ 1; . . . ;N persons at several points in 
time, tp, with p ¼ 1; . . . ;T being a running index denoting the 
discrete time point and T being the number of time points. Time 
interval lengths Δp� 1

1 between time points are given by Δp� 1 ¼

tp � tp� 1 for all p � 2. The values, yjpf , of person j at time point p 
on variable f ¼ 1; . . . ; F are stacked into the column vector yjp. 

This vector of each person at each time point is predicted by the 
matrix product of the autoregressive matrix2 A�Δp� 1 

and the vector 
yjðp� 1Þ of the person at the previous time point (which was Δp� 1 

time units ago) plus an intercept term (which is calculated from 
the individual mean) plus an error term ωjðp� 1Þ. The individual 
means are assumed to be normally distributed with mean vector μ 
and covariance matrix Σ1 (Equation 4). The 1 symbol as sub
script denotes “long-range” (or “asymptotic”, Driver et al., 2017) 
parameters that describe the system for Δ ! 1, that is, a system 
with no temporal relations (A�Δ!1 ¼ 0). The error term has 
a normal distribution with a zero vector as location and covar
iance matrix Q�Δp� 1 

(Equation 5). The interval-dependent discrete- 
time parameter matrices, A�Δp� 1 

and Q�Δp� 1
, are connected to the 

continuous-time drift matrix A via Equations 6–8. The interval- 
dependent error covariance matrix Q�Δp� 1 

additionally depends on 
the within-person covariance matrix Q1 (Equation 7), which is 
assumed equal across persons. For the first time point, the vector 
yj1 is normally distributed with the sum of the individual mean, μj, 
and a deviation, μdev, as location and a within-person covariance 
matrix Σfw (subscript “fw” stands for “first time point, within- 
person”). The to be estimated model parameters of this contin
uous-time model are the drift matrix A, the covariance matrices 
Σ1, Q1, and Σfw, and the mean vectors μ and μdev.

The time interval dependent autoregressive matrix A�Δp� 1 

(Equation 6) contains the autoregressive effects (on the main 
diagonal) and the cross-lagged effects (on the off-diagonals): 

A�Δp� 1
¼

a�Δp� 1;Y1
. . . a�Δp� 1;YF!Y1

..

. . .
. ..

.

a�Δp� 1;Y1!YF
. . . a�Δp� 1;YF

2

6
6
4

3

7
7
5 :

The autoregressive effects characterize the stability of the variables, 
that is, how predictive a value at one time point is for the value 
at the next time point. A high autoregressive effect indicates 
high stability/predictiveness, whereas a low autoregressive effect 
indicates low stability. A cross-lagged effect describes the predic
tion of one variable at a time point on another variable at the next 
time point. Cross-lagged effects may be interpreted like partial 
regression coefficients: A one unit change in the predictor variable 
is associated with an expected change of the dependent variable in 
the amount of the regression coefficient, holding the other 
predictors constant. For instance, a one unit change in Y1 would 
be associated with an expected change in YF in the amount of 
a�Δp� 1;Y1!YF 

Δ time units later when all other predictors are held 
constant.

For better comparability, the cross-lagged effects may be stan
dardized with respect to the within-person variances, for example: 

a�Δp� 1;std;Y1!YF
¼ a�Δp� 1;Y1!YF

ffiffiffiffiffiffiffiffiffi
σ2

wY1

q

ffiffiffiffiffiffiffiffiffi
σ2

wYF

q ; (10) 

where σ2
wY1 

and σ2
wYF 

are main diagonal elements from the within- 
person covariance matrix Q1. The interpretation of standardized 
cross-lagged effects is similar to (non-standardized) cross-lagged 

1As Δp� 1 is constant across persons, the design may be called “unequal-interval nonindividualized” (Hecht et al., 2019).
2In line with Oud and Delsing (2010) we use the asterisk symbol * to denote discrete-time parameters that can be calculated from continuous-time parameters.
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effects, except that the units of both variables are now standard 
deviations. Thus, a standardized cross-lagged effect indicates the 
expected change of a variable YF at time t+Δ in SDYF units 
associated with a one SDY1 change of Y1 at time t holding the 
other predictor variables constant.

Figure 2 illustrates a bivariate continuous-time model for 
three time points. For more explanations, examples, and illus
trations of this (and other) continuous-time models see, for 
instance, Voelkle et al. (2012), Driver et al. (2017), Hecht and 
Voelkle (2021), Hecht et al. (2019), Hecht and Zitzmann 
(2020), and Hecht and Zitzmann (2021).

Simulation study

Data generation

The data-generating model was the continuous-time model 
described in Equations 2–9 with F ¼ 2 processes (i.e., a bivariate 
continuous-time model). The non-varied true model parameters 
were: 

Σ1 ¼ Q1 ¼ Σfw ¼
1 0
0 1

� �

and μ1 ¼ μdev ¼
0
0

� �

:

The drift matrix A contains the auto-effects a11 and a22, which 
were varied in the simulation design, on the main diagonal 
and the cross-effects a21 and a12 as off-diagonal elements, 
which were determined from the varied peak standardized 
cross-lagged effects, a�peak;std;Y1!Y2 

and a�peak;std;Y2!Y1
, and the 

other model parameters. Inserting the true parameter values 
into the model equations (Equations 3–9) gives the data- 
generating model: 

μj1,N2
0
0

� �

;
1 0
0 1

� �� �

; 

for p ¼ 1; yj1 ,N2 μj1 þ
0
0

� �

;
1 0
0 1

� �� �

; 

for p � 2; Δp� 1,Uf0:20;0:40;0:60;0:80g;

A�Δp� 1
¼ exp a11 a12

a21 a22

� �

Δp� 1

� �

;

Figure 2. The bivariate continuous-time model with three time points (schematic). Model parameters that are estimated are set in light text color on dark background. 

Dotted lines indicate parameter relations according to Equations 6 and 7. The dagger symbol y indicates path coefficients derived from IF � A�Δp� 1

� �
in Equation 3.

Q�Δp� 1
¼ irow � exp

2a11 a12 a12 0
a21 a22 þ a11 0 a12
a21 0 a22 þ a11 a12
0 a21 a21 2a22

2

6
6
4

3

7
7
5Δp� 1

8
>><

>>:

9
>>=

>>;

� I4

8
>><

>>:

9
>>=

>>;

1
0
0
1

2

6
6
4

3

7
7
5

8
>><

>>:

9
>>=

>>;

;
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ωjðp� 1Þ,N2
0
0

� �

; Q�Δp� 1

� �

;

yjp ¼ A�Δp� 1
yjðp� 1Þ þ I2 � A�Δp� 1

� �
μj1 þ ωjðp� 1Þ;

where N2 denotes a bivariate normal and U a uniform 
distribution, and I2 and I4 are identity matrices of size 2 
and 4, respectively. Please note that Δp� 1 is constant across 
persons which is a characteristic of an “unequal-interval 
nonindividualized design” (Hecht et al., 2019) and that 
the intra-class correlation is 0.50.

Simulation design

We varied the following factors in our simulation study: number 
of persons (N = 5, 10, 20, 30, 40, 50, or 60), number of time 
points (T = 5, 10, 20, 30, 40, 50, or 60), size of the peak 
standardized cross-lagged effect from process 1 to process 2 
(a�peak;std;Y1!Y2 

= � 0:15, � 0:10, � 0:05, 0.05, 0.10, 0.15), size 
of the peak standardized cross-lagged effect from process 2 to 
process 1 (a�peak;std;Y2!Y1 

= � 0:15, � 0:10, � 0:05, 0.05, 0.10, 
0.15), auto-effect of process 1 (a11 = � 1:05, � 0:70, � 0:45), 
and auto-effect of process 2 (a22 = � 1:05, � 0:70, � 0:45). 
Throughout this work, cross-lagged parameters were standar
dized using the within-person variances (see Equation 10). To 
keep the simulation design within manageable and sensible 
boundaries, we did not fully cross all factors. The auto-effects 
of process 1 and 2 were paired: � 1:05/ � 1:05, � 0:70/ � 0:70, 
and � 0:45/ � 0:45. The peak effect sizes were completely 
crossed and these pairs were completely crossed with the auto- 
effect pairs. To avoid uninformative power estimates of (or very 
close to) zero or one, combinations of smaller effects (all combi
nations that include absolute effect sizes of 0.05) were combined 
with the fully crossed subsets of N = 30, . . ., 60 and T = 30, . . ., 
60, whereas combinations of higher effects (all combinations 
that include absolute effect sizes of 0.10 and 0.15) were combined 
with the fully crossed subsets of N = 5, . . ., 30 and T = 5, . . ., 30. 
All other effect size combinations (absolute effect combinations 
of 0.05/0.10 and 0.05/0.15) were combined with the fully crossed 
N and T. This procedure resulted in a total of 3,312 design cells. 
A detailed overview of the simulation design is provided in the 
supplementary material.

Analysis

We randomly drew cells from the design, generated data 
sets, and ran models until the available CPU time of 1,650 
days was exploited. The mean number of replications per 
design cell was MNrepl ¼ 574 (min = 378, max = 802), the 
mean convergence rate was Mconvrate ¼ 0:81 (min = 0.30, 
max = 1.00), and the mean number of converged models 
was MNconverged ¼ 462 (min = 153, max = 652). All models 
were estimated using the maximum likelihood estimator 
of the R package ctsem (R Core Team, 2020; Driver et al., 
2020) which interfaces to OpenMx (Neale et al., 2016) 

and each model ran on one Intel Xeon Gold 5120 (2.20 
GHz) CPU of a 64-bit Linux Debian 10 “Buster” compu
ter. A model was considered as converged if the OpenMx 
exit code was 0 and the standard errors of all parameters 
were unflawed (i.e., if they were non-missing and 
below 1,000). The analysis model was identical with the 
data-generating model. For each replication, the peak 
standardized cross-lagged effect was deemed insignificant 
(coded as 0) when its 95% confidence interval (CI) cov
ered the value 0 and significant (coded as 1) when 0 was 
not covered by the confidence interval. The 95% CI for an 
undirected alternative hypothesis (population value � 0) was 
calculated as: parameter � 1.96 � SE (Voelkle et al., 2012), with 
SE being the standard error of the parameter.

We used machine learning techniques to derive 
a prediction model for the power of the peak standar
dized cross-lagged effects. Specifically, we combined k-fold 
cross validation (e.g., Kuhn & Johnson, 2013) with step
wise logistic regression. The number of folds was k ¼ 10 
and thus, there were ten training sets (each comprised of 
nine folds) and ten corresponding test sets (one fold). The 
folds were created with function createMultiFolds() from 
R package caret (Kuhn et al., 2020). Within each replicate 
of the cross-validation, a stepwise logistic regression was 
conducted with function stepAIC() from the R package 
MASS (Ripley et al., 2021). The dependent variable was 
the dichotomous significance of the peak standardized 
cross-lagged effect. The stepwise regression algorithm 
started with the intercept-only model; the potentially 
maximal model included the intercept, the number of 
persons N, the number of time points T, the estimated 
peak standardized cross-lagged effect, the estimated abso
lute peak standardized cross-lagged effect, two-way inter
actions of these terms, and quadratic and cubic 
polynomials of these terms. The direction of the selection 
algorithm was both forward and backward and the criter
ion was AIC. As results of this machine learning 
approach, we report the differences concerning the 
selected predictors and statistics of AIC between training 
sets and prediction accuracy statistics (calculated with 
function confusionMatrix() from R package caret) when 
using the trained prediction model for the test set data. 
The final model is then estimated from the entire data 
with the identified relevant predictors.

Results

All ten stepwise logistic regression models resulted in the same 
selected parameters. AICs were very comparable with practi
cally no variation between training sets (MAIC ¼ 14;581;609, 
minAIC ¼ 14;580;228, maxAIC ¼ 14;582;725, SDAIC ¼ 808). 
The prediction accuracies based on the test sets were very 
comparable and high with Macc ¼ 0:8854, minacc ¼ 0:8853, 
maxacc ¼ 0:8855, SDacc < 0:0001. This may be interpreted as 
an indication that the data might not be overfitted. The esti
mates of the final model are given in Table 1.
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Recommendations and Shiny App

Our general recommendation to determine power for a specific 
study design and analysis approach is, of course, to either 
calculate the power with analytically derived equations or – if 
no analytical solutions exist – to conduct tailored simulation 
studies. Such simulations, however, can become complex and 
cumbersome. Then instead, our prediction model might be 
used to obtain a rough power estimate (although we acknowl
edge that generalizing our findings beyond the studied condi
tions is arguable and limitations apply, see Discussion).

Based on our results (final model estimates in Table 1), we 
programed a Shiny App (available at https://psychtools.shi 
nyapps.io/ContinuousTimePowerCalculation) for power cal
culations of peak standardized cross-lagged effects. Inputs are 
the number of persons N, the number of time points T, and the 
targeted value of the peak standardized cross-lagged effect. The 
output is the power of the peak standardized effect for α ¼ 0:05 
and an undirected alternative hypothesis that the effect is 
unequal zero.

Discussion

One of the strengths of continuous-time (vs. discrete-time) 
modeling is the facilitation of exploring the unfolding and 
dissipation of dynamic effects by deriving discrete-time cross- 
lagged effects for a variety of time interval lengths from the 
estimated continuous-time model parameters and then deter
mining the peak effect. Plotting the values of the cross-lagged 
effects against their time interval lengths can provide visual 
support for exploring the shape of the cross-lagged effect dis
tribution. This feature of continuous-time models might be 
advantageous for study planning as well. The interval length 
between measurement occasions can be flexibilized (to some 
degree), because the cross-lagged relations can be explored 
independently from the spacing of measurement occasions in 
the study design.

Researchers might be interested in the peak cross-lagged 
effects as these characterize the maximal impact from one 

variable on another. Thus, for study planning, the statistical 
power to detect those peak cross-lagged effects might be of 
interest. Analytically derived formulas or tailored simulation 
studies could be used for power calculations. However, to our 
best knowledge, such analytical solutions do not exist or are 
not publicly available. This leaves researchers with the option 
to conduct simulation studies, which are, however, challen
ging. To give some rough guidance, we conducted 
a simulation study and derived a prediction formula using 
machine learning techniques.

Generalizability of the results is limited to the conditions 
that were studied. Due to limited computational resources, it 
was not possible to investigate all potentially relevant factors 
and the extent of variation of the included factors, the degree of 
factor crossings, and the number of replications was limited. 
We rather heavily varied and crossed number of persons, 
number of time points, and effect size, as these factors were 
expected to be very predictive. However, the auto-effect 
entered the simulation study with only three different values, 
and both auto-effects had the same value in each design cell. 
We varied only the auto-effect, but not the other model para
meters, and the intra-class correlation was constant as well. We 
used a bivariate continuous-time model (two variables) with 
individual means for which a normal distribution was 
assumed. Significance was determined with confidence inter
vals based on the assumption of normal parameter distribu
tions. The assessment design was unequally spaced (different 
interval lengths between measurement occasions) but the same 
for each person. Only one software/estimation method was 
employed. Thus, our results might not generalize to other 
conditions, particularly not to settings where auto-effects are 
much larger, where the auto-effects of the processes differ in 
size, where the other model parameters exhibit other values, to 
continuous-time models with more than two variables and 
other assumptions about individual parameters, to other intra- 
class correlations, to different procedures for determining sig
nificance, to different assessment designs (e.g., individualized 
designs), to other software and estimation method. The 
employed model was a bivariate continuous-time model with 
random intercepts (which is a more general variant of the 
bivariate random intercepts cross-lagged panel model, RI- 
CLPM). Generalizability to other models is limited.

One limitation of the bivariate continuous-time model is 
that both discrete-time cross-lagged effects have their maxima 
for the same interval length. Researchers should be aware of 
this limitation and avoid the use of bivariate continuous-time 
models when this restriction is not theoretically supported.

The dependent variable in the present study was statistical 
power. For study planning, other criteria might be of interest as 
well. For instance, Hecht and Zitzmann (2021) illustrated the 
dependence of model performance (an aggregated measure 
consisting of convergence, bias, and coverage) on number of 
persons N and time points T. So even if a sufficient statistical 
power is achieved with some N and T, model performance 
might still be suboptimal.

Further limitations are that our results are based on a rather 
small amount of data (due to restricted computational 
resources), that we conducted our power analyses only for 
the very common significance level α ¼ :05 and an undirected 

Table 1. Parameter estimates from the logistic regression model for the prediction 
of statistical power of peak cross-lagged effects.

Parameter Value

Intercept −11.47
N 0.37
T 0.14
a�std;peak −0.33

a�std;peak

�
�
�

�
�
� 20.67

N2 −0.0092
T2 −0.0042
a�2

std;peak −36.41

N3 0.000071
T3 0.000030
ja�std;peakj

3 10.80

N � T 0.0014
N � a�std;peak 0.0024
N � ja�std;peakj 0.12
T � ja�std;peakj 1.04
a�std;peak � ja

�
std;peakj 0.47

N: Number of persons; T : Number of time points; a�std;peak: Value of peak 
standardized cross-lagged effect.
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alternative hypothesis, that the regression model might not 
contain all relevant factors and does not perfectly predict 
power, and that our analysis model was identical to the data- 
generating model. Negative effects of model misspecifications 
on estimation performance in autoregressive modeling con
texts have been shown, for example, by Tanaka and Maekawa 
(1984) and Kunitomo and Yamamoto (1985); thus, negative 
effects of model misspecifications on power are imaginable as 
well. Further, the peak cross-lagged effects might be located in 
regions with no or sparse data and the quality of such inter
polations might also depend on design characteristics.

In sum, this leaves enough material for future research on 
statistical power in continuous-time modeling which we con
sider quite worthwhile because we believe that continuous- 
time modeling will become even more prominent fueled by 
the rise of intensive longitudinal methods like the experience 
sampling method (ESM), ecological momentary assessment 
(EMA), and ambulatory assessment (AA). In future research, 
it would be interesting to derive analytical solutions to avoid 
the discussed limitations concerning generalizability. Until 
then, our prediction model may be used as a preliminary brid
ging approach. In this regard, we see our article as one step 
forward toward a full understanding of statistical power in 
continuous-time modeling.

In light of the limitations, we caution to use our presented 
results unreflectingly. Still, we think that we made a modest 
contribution and hope that researchers who are interested in 
exploring the unfolding of dynamic effects will find the results 
and recommendations useful.
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